人工智能:从理论到现实,技术、应用与未来趋势深度解析

4

人工智能,一个在过去几十年里迅速发展的学科,已经渗透到我们生活的方方面面。从最初的理论设想到如今的实际应用,人工智能的发展历程充满了挑战与突破。最初在1956年达特茅斯会议上被提出的“人工智能”概念,经过无数研究者的努力,已经发展成为一个涵盖机器学习、计算机视觉、自然语言处理等多个领域的综合性学科。它不仅仅是一门科学,更是一种对人类智能的模拟和延伸。

人工智能的挑战在于,它试图让机器完成那些通常需要人类智能才能完成的复杂任务。然而,随着技术的发展,我们对“复杂任务”的定义也在不断演变。曾经需要人脑进行的科学和工程计算,现在计算机可以更快、更准确地完成。因此,人工智能的目标也在不断调整,一方面不断取得新的进展,另一方面又转向更具挑战性的目标。

目前,计算机是研究和实现人工智能技术的主要工具。人工智能的发展与计算机科学技术的发展紧密相连。除了计算机科学,人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多个学科。这种跨学科的特性使得人工智能的研究更加复杂,但也更加具有潜力。

人工智能学科的主要研究内容

人工智能学科的研究内容非常广泛,包括知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。这些领域相互关联,共同推动着人工智能的发展。

知识表示是人工智能的基本问题之一。如何将知识以一种计算机可以理解和处理的方式进行表示,是实现人工智能的关键。常用的知识表示方法包括逻辑表示法、产生式表示法、语义网络表示法和框架表示法等。每种方法都有其优缺点,适用于不同的应用场景。

自动推理和搜索方法是知识的使用过程。在问题求解过程中,如何有效地利用知识进行推理和搜索,是提高人工智能系统效率的关键。推理过程一般可分为演绎推理和非演绎推理。由于知识处理的需要,近年来提出了多种非演绎的推理方法,如连接机制推理、类比推理、基于示例的推理、反绎推理和受限推理等。

搜索是人工智能的一种问题求解方法。搜索策略决定着问题求解的一个推理步骤中知识被使用的优先关系。可分为无信息导引的盲目搜索和利用经验知识导引的启发式搜索。启发式知识常由启发式函数来表示,启发式知识利用得越充分,求解问题的搜索空间就越小。典型的启发式搜索方法有A*、AO*算法等。近几年搜索方法研究开始注意那些具有百万节点的超大规模的搜索问题。

机器学习是人工智能的另一重要课题。机器学习是指在一定的知识表示意义下获取新知识的过程。按照学习机制的不同,主要有归纳学习、分析学习、连接机制学习和遗传学习等。机器学习使得人工智能系统能够从数据中学习,不断提高自身的性能。

知识处理系统主要由知识库和推理机组成。知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。如果在知识库中存储的是某一领域(如医疗诊断)的专家知识,则这样的知识系统称为专家系统。为适应复杂问题的求解需要,单一的专家系统向多主体的分布式人工智能系统发展,这时知识共享、主体间的协作、矛盾的出现和处理将是研究的关键问题。

人工智能的历史回顾

人工智能的历史可以追溯到计算机的诞生之前。早期的科学家和哲学家们就已经开始思考如何制造出能够模拟人类思维的机器。英国科学家图灵提出了图灵测试,作为判断机器是否具有智能的标准。图灵实验的本质是,如果一个人在不看外型的情况下不能区别是机器的行为还是人的行为时,这个机器就是智慧的。图灵的贡献不仅在于此,他还在理论上奠定了计算机产生的基础。

另一位杰出的数学家、哲学家布尔,通过对人类思维进行数学化精确地刻画,奠定了智慧机器的思维结构与方法。我们今天使用的布尔代数,就是由他开创的。当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具。

在计算机出现后的岁月中,无数科学家为这个目标努力着。现在人工智能已经不再是几个科学家的专利,全世界几乎所有大学的计算机系都有人在研究这门学科。学习计算机的大学生也必须学习这样一门课程。在大家的努力下,计算机似乎已经变得十分聪明了。在一些领域,计算机已经能够帮助人类进行一些原来只属于人类的工作。

在世界各地,对人工智能的研究很早就开始了,但对人工智能的真正实现要从计算机的诞生开始算起。AI这个英文单词最早是在1956年的一次会议上提出的,在此以后,因此一些科学的努力它得以发展。人工智能的进展并不象我们期待的那样迅速,因为人工智能的基本理论还不完整,我们还不能从本质上解释我们的大脑为什么能够思考,这种思考来自于什么,这种思考为什么得以产生等一系列问题。但经过这几十年的发展,人工智能正在以它巨大的力量影响着人们的生活。

让我们顺着人工智能的发展来回顾一下计算机的发展,在1941年由美国和德国两国共同研制的第一台计算机诞生了,从此以后人类存储和处理信息的方法开始发生革命性的变化。第一台计算机的体型可不算太好,它比较胖,还比较娇气,需要工作在有空调的房间里,如果希望它处理什么事情,需要大家把线路重新接一次,这可不是一件省力气的活儿,把成千上万的线重新焊一下我想现在的程序员已经是生活在天堂中了。

终于在1949发明了可以存储程序的计算机,这样,编程程序总算可以不用焊了,好多了。因为编程变得十分简单,计算机理论的发展终于导致了人工智能理论的产生。人们总算可以找到一个存储信息和自动处理信息的方法了。

虽然现在看来这种新机器已经可以实现部分人类的智力,但是直到50年代人们才把人类智力和这种新机器联系起来。我们注意到旁边这位大肚子的老先生了,他在反馈理论上的研究最终让他提出了一个论断,所有 人类智力的结果都是一种反馈的结果,通过不断地将结果反馈给机体而产生的动作,进而产生了智能。我们家的抽水马桶就是一个十分好的例子,水之所以不会常流不断,正是因为有一个装置在检测水位的变化,如果水太多了,就把水管给关了,这就实现了反馈,是一种负反馈。如果连我们厕所里的装置都可以实现反馈了,那我们应该可以用一种机器实现反馈,进而实现人类智力的机器形式重现。这种想法对于人工智能早期的有着重大的影响。

在1955的时候,香农与人一起开发了The Logic TheoriST程序,它是一种采用树形结构的程序,在程序运行时,它在树中搜索,寻找与可能答案最接近的树的分枝进行探索,以得到正确的答案。这个程序在人工智能的历史上可以说是有重要地位的,它在学术上和社会上带来的巨大的影响,以至于我们现在所采用的方法思想方法有许多还是来自于这个50年代的程序。

1956年,麦卡锡召集了一次会议来讨论人工智能未来的发展方向。从那时起,人工智能的名字才正式确立,这次会议在人工智能历史上不是巨大的成功,但是这次会议给人工智能奠基人相互交流的机会,并为未来人工智能的发展起了铺垫的作用。在此以后,工人智能的重点开始变为建立实用的能够自行解决问题的系统,并要求系统有自学习能力。在1957年,香农和另一些人又开发了一个程序称为General Problem Solver(GPS),它对Wiener的反馈理论有一个扩展,并能够解决一些比较普遍的问题。别的科学家在努力开发系统时,这位科学家作出了一项重大的贡献,他创建了表处理语言LISP,直到现在许多人工智能程序还在使用这种语言,它几乎成了人工智能的代名词,到了今天,LISP仍然在发展。

在1963年,麻省理工学院受到了美国政府和国防部的支持进行人工智能的研究,美国政府不是为了别的,而是为了在冷战中保持与苏联的均衡,虽然这个目的是带点火药味的,但是它的结果却使人工智能得到了巨大的发展。其后发展出的许多程序十分引人注目,麻省理工大学开发出了SHRDLU。在这个大发展的60年代,STUDENT系统可以解决代数问题,而SIR系统则开始理解简单的英文句子了,SIR的出现导致了新学科的出现:自然语言处理。在70年代出现的专家系统成了一个巨大的进步,他头一次让人知道计算机可以代替人类专家进行一些工作了,由于计算机硬件性能的提高,人工智能得以进行一系列重要的活动,如统计分析数据,参与医疗诊断等等,它作为生活的重要方面开始改变人类生活了。在理论方面,70年代也是大发展的一个时期,计算机开始有了简单的思维和视觉,而不能不提的是在70年代,另一个人工智能语言Prolog语言诞生了,它和LISP一起几乎成了人工智能工作者不可缺少的工具。不要以为人工智能离我们很远,它已经在进入我们的生活,模糊控制,决策支持等等方面都有人工智能的影子。让计算机这个机器代替人类进行简单的智力活动,把人类解放用于其它更有益的工作,这是人工智能的目的,但我想对科学真理的无尽追求才是最终的动力吧。

人工智能的应用领域

人工智能的应用领域非常广泛,涵盖了问题求解、逻辑推理与定理证明、自然语言处理、智能信息检索技术和专家系统等多个方面。

问题求解是人工智能的一大应用。例如,下棋程序就是问题求解的典型例子。在下棋程序中应用的技术,如向前看几步,把困难的问题分解成一些较容易的子问题,发展成为搜索和问题归纳这样的人工智能基本技术。今天的计算机程序已能够达到下各种方盘棋和国际象棋的锦标赛水平。

逻辑推理与定理证明是人工智能研究中最持久的领域之一。对数学中臆测的题.定理寻找一个证明或反证,不仅需要有根据假设进行演绎的能力,而且许多非形式的工作,包括医疗诊断和信息检索都可以和定理证明问题一样加以形式化,因此,在人工智能方法的研究中定理证明是一个极其重要的论题。

自然语言处理是人工智能技术应用于实际领域的典型范例。目前该领域的主要课题是:计算机系统如何以主题和对话情境为基础,注重大量的常识——世界知识和期望作用,生成和理解自然语言。这是一个极其复杂的编码和解码问题。

智能信息检索技术 受技术迅猛发展的影响,信息获取和精化技术已成为当代计算机科学与技术研究中迫切需要研究的课题,将人工智能技术应用于这一领域的研究是人工智能走向广泛实际应用的契机与突破口。

专家系统是目前人工智能中最活跃、最有成效的一个研究领域。它是一种具有特定领域内大量知识与经验的程序系统。人类专家由于具有丰富的知识,所以才能达到优异的解决问题的能力。那么计算机程序如果能体现和应用这些知识,也应该能解决人类专家所解决的问题,而且能帮助人类专家发现推理过程中出现的差错,现在这一点已被证实。如在矿物勘测、化学分析、规划和医学诊断方面,专家系统已经达到了人类专家的水平。成功的例子如:PROSPECTOR系统发现了一个钼矿沉积,价值超过1亿美元。DENDRL系统的性能已超过一般专家的水平,可供数百人在化学结构分析方面的使用。MY CIN系统可以对血液传染病的诊断治疗方案提供咨询意见。经正式鉴定结果,对患有细菌血液病、脑膜炎方面的诊断和提供治疗方案已超过了这方面的专家。

人工智能理论的数学化趋势

在现代科技高速发展的今天,许多科技理论都有赖于数学提供证明,有赖于数学对其的仿真。人工智能的发展也不例外,如何把人们的思维活动形式化、符号化,使其得以在计算机上实现,就成为人工智能研究的重要课题。在这方面,逻辑的有关理论、方法、技术起着十分重要的作用,它不仅为人工智能提供了有力的工具,而且也为知识的推理奠定了理论基础。

人工智能中用到的逻辑可概括地分为两大类。一类是经典命题逻辑和一阶谓词逻辑,其特点是任何一个命题的真值或者是“真”,或者是“假”,二者必居其一。这一类问题可以用数学里的经典逻辑理论来解决。世界上事物千差万别,形形色色,除了确定性的事物或概念外,更广泛存在的是不确定性的事物或概念。这些不确定的事物是无法用经典逻辑理论来解决的。因此我们需要发展新的数学工具来表示这些问题。

目前在人工智能中对不确定性的事物或概念是通过运用多值逻辑、模糊理论及概率来描述、处理的。多值逻辑、模糊理论及概率虽然都是通过在〔!,"〕上取值来刻画不确定性,但三者之间又存在着很大区别。多值逻辑是通过在真(")与假(!)之间增加了若干中介真值来描述事物为真的程度的,但它把各个中介真值看作是彼此完全分立的,界限分明。而模糊理论认为不同的中介真值之间没有明确的界限,表现了不同中介值相互贯通、渗透的特征,从而更好地反映了不确定性的本质。概率用来度量事件发生的可能性,而事件本身的含义是明确的,只是在一定的条件下它可能不发生,它与模糊理论是从两个不同的角度来描述不确定性的,因而有人称模糊理论描述了事物内在的不确定性,而概率描述的是事物外在的不确定性。由上可以看出,数学使得人工智能能很好的模拟人类智能,大大推动了人工智能的向前发展。现在人工智能中还有一些问题用现在的数学很难表示出来,相信在数学知识不断发展之后,这些问题能很快得到解决。

人工智能的发展现状及前景

目前绝大多数人工智能系统都是建立在物理符号系统假设之上的。在尚未出现能与物理符号系统假设相抗衡的新的人工智能理论之前,无论从设计原理还是从已取得的实验结果来看,人工智能研究都在不断取得进展。

80 年代,研究学者总结了专家系统的成功经验,吸收了认知科学研究的最新成果,提出了作为通用智能基础的体系结构。目前的已经显示出强大的问题求解能力。在Soar中已实现了30 多种搜索方法,实现了若干知识密集型任务(专家系统)。人工智能的一种新的途径。它认为无需概念或者说无需符号表示,智能系统的能力可以逐步进化。在他的研究中突出4 个概念:(1) 所处的境遇 机器人不涉及抽象的描述,而是处在直接影响系统的行为的境地.(2) 具体化 机器人有躯干,有直接来自周围世界的经验,他们的感官起作用后立即会有反馈.(3) 智能 智能的来源不仅仅是限于计算装置,也是由于与周围进行交互的动态决定.(4) 浮现 从系统与周围世界的交互以及有时候系统的部件间的交互浮现出智能。

人工智能的发展前景是广阔的。随着技术的不断进步,人工智能将在更多领域得到应用,为人类带来更多的便利和价值。人工智能将不仅能够模拟人类的智能,还能够超越人类的智能,创造出新的知识和技术。

人工智能不单单需要逻辑思维与模仿,科学家们对人类大脑和神经系统研究得越多,他们越加肯定:情感是智能的一部分,而不是与智能相分离的。因此人工智能领域的下一个突破可能不仅在于赋予计算机更多的逻辑推理能力,而且还要赋予它情感能力。许多科学家断言,机器的智能会迅速超过阿尔伯特·爱因斯坦和霍金的智能之和。到下世纪中叶,人类生命的本质也会发生变化。神经植入将增强人类的知识和思考能力,并且开始向一种复合的人/机关系过渡,这种复合关系将使人类逐渐停止对生物机体的需求。大量非常微小的机器人将在大脑的感觉区里占据一席之地,并且创造出真假难辨的虚拟现实的仿真效果。

人工智能的实现,不是天方夜谭。虽然会很辛苦,但是没有人规定只有人类可以思考。就像是生命的不同表现形式,动物,植物,微生物,是不同的生命的形式。人类可以以未知的方式思考,计算机也可以以另一种(并非一定要和人相同的)形式思考。